67 research outputs found

    Variations on Noetherianness

    Full text link
    In constructive mathematics, several nonequivalent notions of finiteness exist. In this paper, we continue the study of Noetherian sets in the dependently typed setting of the Agda programming language. We want to say that a set is Noetherian, if, when we are shown elements from it one after another, we will sooner or later have seen some element twice. This idea can be made precise in a number of ways. We explore the properties and connections of some of the possible encodings. In particular, we show that certain implementations imply decidable equality while others do not, and we construct counterexamples in the latter case. Additionally, we explore the relation between Noetherianness and other notions of finiteness.Comment: In Proceedings MSFP 2016, arXiv:1604.0038

    Formalizing íś‹-calculus in guarded cubical Agda

    Get PDF

    Quotienting the delay monad by weak bisimilarity

    Get PDF
    The delay datatype was introduced by Capretta as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. It is a monad and it constitutes a constructive alternative to the maybe monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay monad quotiented by weak bisimilarity is still a monad. In this paper, we consider Hofmann's alternative approach of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the (semi-classical) axiom of countable choice. We have fully formalized our results in the Agda dependently typed programming language

    Formalizing restriction categories

    Get PDF
    Restriction categories are an abstract axiomatic framework by Cockett and Lack for reasoning about (generalizations of the idea of) partiality of functions. In a restriction category, every map defines an endomap on its domain, the corresponding partial identity map. Restriction categories cover a number of examples of different flavors and are sound and complete with respect to the more synthetic and concrete partial map categories. A partial map category is based on a given category (of total maps) and a map in it is a map from a subobject of the domain. In this paper, we report on an Agda formalization of the first chapters of the theory of restriction categories, including the challenging completeness result. We explain the mathematics formalized, comment on the design decisions we made for the formalization, and illustrate them at work

    Guarded recursion in Agda via sized types

    Get PDF
    In type theory, programming and reasoning with possibly non-terminating programs and potentially infinite objects is achieved using coinductive types. Recursively defined programs of these types need to be productive to guarantee the consistency of the type system. Proof assistants such as Agda and Coq traditionally employ strict syntactic productivity checks, which often make programming with coinductive types convoluted. One way to overcome this issue is by encoding productivity at the level of types so that the type system forbids the implementation of non-productive corecursive programs. In this paper we compare two different approaches to type-based productivity: guarded recursion and sized types. More specifically, we show how to simulate guarded recursion in Agda using sized types. We formalize the syntax of a simple type theory for guarded recursion, which is a variant of Atkey and McBride\u27s calculus for productive coprogramming. Then we give a denotational semantics using presheaves over the preorder of sizes. Sized types are fundamentally used to interpret the characteristic features of guarded recursion, notably the fixpoint combinator

    Ticking clocks as dependent right adjoints: Denotational semantics for clocked type theory

    Get PDF
    Clocked Type Theory (CloTT) is a type theory for guarded recursion useful for programming with coinductive types, allowing productivity to be encoded in types, and for reasoning about advanced programming language features using an abstract form of step-indexing. CloTT has previously been shown to enjoy a number of syntactic properties including strong normalisation, canonicity and decidability of the equational theory. In this paper we present a denotational semantics for CloTT useful, e.g., for studying future extensions of CloTT with constructions such as path types. The main challenge for constructing this model is to model the notion of ticks on a clock used in CloTT for coinductive reasoning about coinductive types. We build on a category previously used to model guarded recursion with multiple clocks. In this category there is an object of clocks but no object of ticks, and so tick-assumptions in a context can not be modelled using standard tools. Instead we model ticks using dependent right adjoint functors, a generalisation of the category theoretic notion of adjunction to the setting of categories with families. Dependent right adjoints are known to model Fitch-style modal types, but in the case of CloTT, the modal operators constitute a family indexed internally in the type theory by clocks. We model this family using a dependent right adjoint on the slice category over the object of clocks. Finally we show how to model the tick constant of CloTT using a semantic substitution. This work improves on a previous model by the first two named authors which not only had a flaw but was also considerably more complicated.Comment: 31 pages. Second version is a minor revision. arXiv admin note: text overlap with arXiv:1804.0668

    Quotienting the delay monad by weak bisimilarity

    Get PDF
    The delay datatype was introduced by Capretta (Logical Methods in Computer Science, 1(2), article 1, 2005) as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. The delay datatype is a monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay datatype quotiented by weak bisimilarity is still a monad-a constructive alternative to the maybe monad. In this paper, we consider the alternative approach of Hofmann (Extensional Constructs in Intensional Type Theory, Springer, London, 1997) of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the (semi-classical) axiom of countable choice. With the aid of these principles, we also prove that the quotiented delay datatype delivers free ω-complete pointed partial orders (ωcppos). Altenkirch et al. (Lecture Notes in Computer Science, vol. 10203, Springer, Heidelberg, 534-549, 2017) demonstrated that, in homotopy type theory, a certain higher inductive-inductive type is the free ωcppo on a type X essentially by definition; this allowed them to obtain a monad of free ωcppos without recourse to a choice principle. We notice that, by a similar construction, a simpler ordinary higher inductive type gives the free countably complete join semilattice on the unit type 1. This type suffices for constructing a monad, which is isomorphic to the one of Altenkirch et al. We have fully formalized our results in the Agda dependently typed programming language
    • …
    corecore